\(\int \frac {1}{(d+e x) (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [1960]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 121 \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2}{3 \left (c d^2-a e^2\right ) (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {8 c d \left (c d^2+a e^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

[Out]

2/3/(-a*e^2+c*d^2)/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-8/3*c*d*(2*c*d*e*x+a*e^2+c*d^2)/(-a*e^2+c*d
^2)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {672, 627} \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2}{3 (d+e x) \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {8 c d \left (a e^2+c d^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

[In]

Int[1/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

2/(3*(c*d^2 - a*e^2)*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (8*c*d*(c*d^2 + a*e^2 + 2*c*d*e*
x))/(3*(c*d^2 - a*e^2)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 627

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[-2*((b + 2*c*x)/((b^2 - 4*a*c)*Sqrt[a + b*x
+ c*x^2])), x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 672

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e)*(d + e*x)^m*((a
 + b*x + c*x^2)^(p + 1)/((m + p + 1)*(2*c*d - b*e))), x] + Dist[c*(Simplify[m + 2*p + 2]/((m + p + 1)*(2*c*d -
 b*e))), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a
*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p + 2], 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2}{3 \left (c d^2-a e^2\right ) (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {(4 c d) \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 \left (c d^2-a e^2\right )} \\ & = \frac {2}{3 \left (c d^2-a e^2\right ) (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {8 c d \left (c d^2+a e^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.79 \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2 a^2 e^4-4 a c d e^2 (3 d+2 e x)-2 c^2 d^2 \left (3 d^2+12 d e x+8 e^2 x^2\right )}{3 \left (c d^2-a e^2\right )^3 (d+e x) \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[1/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(2*a^2*e^4 - 4*a*c*d*e^2*(3*d + 2*e*x) - 2*c^2*d^2*(3*d^2 + 12*d*e*x + 8*e^2*x^2))/(3*(c*d^2 - a*e^2)^3*(d + e
*x)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 2.87 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.14

method result size
gosper \(-\frac {2 \left (c d x +a e \right ) \left (-8 x^{2} c^{2} d^{2} e^{2}-4 x a c d \,e^{3}-12 x \,c^{2} d^{3} e +a^{2} e^{4}-6 a c \,d^{2} e^{2}-3 c^{2} d^{4}\right )}{3 \left (e^{6} a^{3}-3 d^{2} e^{4} a^{2} c +3 d^{4} e^{2} c^{2} a -c^{3} d^{6}\right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}}\) \(138\)
default \(\frac {-\frac {2}{3 \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right ) \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}+\frac {8 c d e \left (2 c d e \left (x +\frac {d}{e}\right )+e^{2} a -c \,d^{2}\right )}{3 \left (e^{2} a -c \,d^{2}\right )^{3} \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}}{e}\) \(146\)
trager \(-\frac {2 \left (-8 x^{2} c^{2} d^{2} e^{2}-4 x a c d \,e^{3}-12 x \,c^{2} d^{3} e +a^{2} e^{4}-6 a c \,d^{2} e^{2}-3 c^{2} d^{4}\right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}{3 \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}\right ) \left (e x +d \right )^{2} \left (e^{2} a -c \,d^{2}\right ) \left (c d x +a e \right )}\) \(146\)

[In]

int(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*(c*d*x+a*e)*(-8*c^2*d^2*e^2*x^2-4*a*c*d*e^3*x-12*c^2*d^3*e*x+a^2*e^4-6*a*c*d^2*e^2-3*c^2*d^4)/(a^3*e^6-3*
a^2*c*d^2*e^4+3*a*c^2*d^4*e^2-c^3*d^6)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 306 vs. \(2 (113) = 226\).

Time = 1.34 (sec) , antiderivative size = 306, normalized size of antiderivative = 2.53 \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \, {\left (8 \, c^{2} d^{2} e^{2} x^{2} + 3 \, c^{2} d^{4} + 6 \, a c d^{2} e^{2} - a^{2} e^{4} + 4 \, {\left (3 \, c^{2} d^{3} e + a c d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{3 \, {\left (a c^{3} d^{8} e - 3 \, a^{2} c^{2} d^{6} e^{3} + 3 \, a^{3} c d^{4} e^{5} - a^{4} d^{2} e^{7} + {\left (c^{4} d^{7} e^{2} - 3 \, a c^{3} d^{5} e^{4} + 3 \, a^{2} c^{2} d^{3} e^{6} - a^{3} c d e^{8}\right )} x^{3} + {\left (2 \, c^{4} d^{8} e - 5 \, a c^{3} d^{6} e^{3} + 3 \, a^{2} c^{2} d^{4} e^{5} + a^{3} c d^{2} e^{7} - a^{4} e^{9}\right )} x^{2} + {\left (c^{4} d^{9} - a c^{3} d^{7} e^{2} - 3 \, a^{2} c^{2} d^{5} e^{4} + 5 \, a^{3} c d^{3} e^{6} - 2 \, a^{4} d e^{8}\right )} x\right )}} \]

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

-2/3*(8*c^2*d^2*e^2*x^2 + 3*c^2*d^4 + 6*a*c*d^2*e^2 - a^2*e^4 + 4*(3*c^2*d^3*e + a*c*d*e^3)*x)*sqrt(c*d*e*x^2
+ a*d*e + (c*d^2 + a*e^2)*x)/(a*c^3*d^8*e - 3*a^2*c^2*d^6*e^3 + 3*a^3*c*d^4*e^5 - a^4*d^2*e^7 + (c^4*d^7*e^2 -
 3*a*c^3*d^5*e^4 + 3*a^2*c^2*d^3*e^6 - a^3*c*d*e^8)*x^3 + (2*c^4*d^8*e - 5*a*c^3*d^6*e^3 + 3*a^2*c^2*d^4*e^5 +
 a^3*c*d^2*e^7 - a^4*e^9)*x^2 + (c^4*d^9 - a*c^3*d^7*e^2 - 3*a^2*c^2*d^5*e^4 + 5*a^3*c*d^3*e^6 - 2*a^4*d*e^8)*
x)

Sympy [F]

\[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {1}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}} \left (d + e x\right )}\, dx \]

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral(1/(((d + e*x)*(a*e + c*d*x))**(3/2)*(d + e*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e*(a*e^2-c*d^2)>0)', see `assu
me?` for mor

Giac [F]

\[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int { \frac {1}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}} {\left (e x + d\right )}} \,d x } \]

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*(e*x + d)), x)

Mupad [B] (verification not implemented)

Time = 10.00 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.99 \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (-a^2\,e^4+6\,a\,c\,d^2\,e^2+4\,a\,c\,d\,e^3\,x+3\,c^2\,d^4+12\,c^2\,d^3\,e\,x+8\,c^2\,d^2\,e^2\,x^2\right )}{3\,\left (a\,e+c\,d\,x\right )\,{\left (a\,e^2-c\,d^2\right )}^3\,{\left (d+e\,x\right )}^2} \]

[In]

int(1/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)),x)

[Out]

(2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*(3*c^2*d^4 - a^2*e^4 + 8*c^2*d^2*e^2*x^2 + 6*a*c*d^2*e^2 + 12
*c^2*d^3*e*x + 4*a*c*d*e^3*x))/(3*(a*e + c*d*x)*(a*e^2 - c*d^2)^3*(d + e*x)^2)